REGIOSELECTIVE STANNYLMETALATION OF ACETYLENES IN THE PRESENCE OF TRANSITION-METAL CATALYST

Jun-ichi Hibino, Seijiro Matsubara, Yoshitomi Morizawa, Koichiro Oshima*, and Hitosi Nozaki

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606, Japan

Abstract: The reaction of terminal acetylenes with Bu₃SnMgMe, Bu₃SnAlEt₂, or $(Bu_3Sn)_2$ Zn in the presence of various transition-metal catalysts provides vinylstannanes in good yields. Whereas copper catalyzed stannylmagnesation of 4-benzyloxy-l-butyne gives (E)-4-benzyloxy-l-tributylstannyl-1-butene exclusively, palladium catalyzed stannylzincation affords 4-benzyloxy-2-tributylstannyl-l-butene preferentially.

The reaction of the organometallic compounds prepared from $PhMe_2SiLi$ and MeMgI or Et_2AlC1 with an acetylenic linkage affords simple and general access to the cis-addition products of the component atoms. The regio- and stereochemistry heavily depend on the nature of the transition-metal catalysts and the reaction is useful in synthetic work. Here we wish to report that $Bu_3SnMgMe$, $Bu_3SnAlEt_2$, or $(Bu_3Sn)_2Zn$ reacts with terminal acetylenes to give vinylstannanes under good control of the regio- and stereoselectivity. 2 , 3

An ethereal solution of methylmagnesium iodide (1.0 M, 3.0 ml, 3.0 mmol) was added to a THF solution of tributylstannyllithium 4 , prepared from ${\rm SnCl}_2$ (0.58 g, 3.0 mmol) and butyllithium (1.5 M, 6.0 ml, 9.0 mmol) at 0°C under argon atmosphere. After stirring for 15 min, CuCN (4 mg, 5 mol%) and 4-benzyloxy-1-butyne (0.16 g, 1.0 mmol) in THF (5 ml) was added and the whole was stirred for 30 min at 0°C. Aqueous workup and alumina column chromatography gave 4-benzyloxy-1-tributylstannyl-1-butene 5 (0.38 g, 88% yield) as a single product (Table 1, entry 2).

Many combinations of Bu_3SnMtl -transition-metal catalyst were examined. Whereas $Bu_3SnAlEt_2$ -CuCN system provided a mixture of l-tributylstannyl-lalkene (I) and its regio isomer (II) in an 81:19 ratio (entry 4), $(Bu_3Sn)_2Zn$ -Pd(PPh_3)4 gave II predominantly (entry 6).

The reaction of Bu₃SnMgMe-CuCN with internal acetylene such as 5-benzyloxy-2-pentyne gave no addition product and the starting acetylene compound was recovered unchanged. As shown in Scheme 1, stannylmetalation proceeds in cis-fashion. Treatment of phenylacetylene with Bu₃SnAlEt₂ in the presence of CuCN gave isomeric two products which were separated by preparative GLPC (Silicone OV 17, 2 m, 200°C). The product III (\underline{R}_t = 4 min) showed ${}^1\text{H-NMR}$ (CDCl₃) signals at δ 5.43 (d, \underline{J} = 2.7 Hz, \underline{H}_b), 6.03 (d, \underline{J} =

Table l. Transition-metal catalyzed stannylmetalation^{a)}

RCECH
$$\frac{1. \text{ }^{\text{n}}\text{Bu}_{3}\text{Sn-Mtl, cat.}}{2. \text{ }^{\text{H}}_{3}\text{O}^{+}, \text{ }^{\text{O}^{\circ}\text{C}}, \text{ }^{\text{10 min}} \text{ }^{\text{H}}} + \frac{\text{R}}{\text{SnBu}_{3}^{\text{n}}} + \frac{\text{R}}{\text{n}_{\text{Bu}_{3}}\text{Sn}} = C = C + \frac{\text{H}}{\text{H}}$$

Entry	Substrate R =	Reagent	Catalyst	Yieldb) Ratioc) of I/II		
				(%)	I	11
1	PhCH ₂ OCH ₂ CH ₂ -	(ⁿ Bu ₃ Sn) ₂ CuCN ^d)	75	36	64
2		n _{Bu3} SnMgMe ^e)	CuCN	88	100	0
3		ⁿ Bu ₃ SnMgMe	CuBr·SMe ₂	23	34	66
4		n _{Bu3} SnAlEt ₂ e)	CuCN	86	81	19
5		(ⁿ Bu ₃ Sn) ₂ Zn ^f)	CuCN	63	26	74
6		(ⁿ Bu ₃ Sn) ₂ Zn	Pd(PPh ₃) ₄	81	14	86
7	Ph-	ⁿ Bu ₃ SnMgMe	CuCN	89g)	>95	< 5
8		$^{ m n}_{ m Bu}_3$ SnAlEt $_2$	CuCN	₈₈ g)	79	21
9		(ⁿ Bu ₃ Sn) ₂ Zn	Pd(PPh ₃) ₄	93g)	60	40
10		(ⁿ Bu ₃ Sn) ₂ Zn	PdCl ₂ (PPh ₃) ₂	89g)	>95	< 5
11	ⁿ C ₁₀ H ₂₁ -	n _{Bu3} SnMgMe	CuCN	70 ^h)	70	30
12	-	n _{Bu3} SnAlEt ₂	CuCN	87 ^h)	38	62
13		(ⁿ Bu ₃ Sn) ₂ Zn	Pd(PPh ₃) ₄	70 ^h)	< 5	>95

a) Three mol of n Bu $_{3}$ Sn-Mtl reagent, one mol of acetylene compound, and 5mol% of catalyst were employed. b) Isolated yield unless otherwise noted. c) The ratios were determined by GLPC and 1 H-NMR spectra. d) A reagent was produced by mixing the stannyllithium with CuCN in a 2:1 ratio (see ref 2). e) Prepared from the stannyllithium and MeMgI (or Et $_{2}$ AlCl) in a 1:1 ratio. f)Prepared from the stannyllithium and ZnBr $_{2}$ in a 2:1 ratio. g)GLPC yield using n-hexacosane as an internal standard. h) 1 H-NMR yield using dimethyl sulfoxide as an internal standard.

2.7 Hz, $\rm H_a$). The other isomer IV having longer retention time ($\rm \underline{R}_t$ = 7 min) gave $^{\rm l}$ H-NMR (CDCl $_{\rm 3}$) absorption at δ 6.87 (s, 2H, H $_{\rm c}$ and H $_{\rm d}$). The assignment of stereochemistry of H $_{\rm a}$ and H $_{\rm b}$ were based on $^{\rm l}$ H-NMR spectral data of the hydrostannylation products. $^{\rm 6}$ Quenching the reaction mixture with D $_{\rm 2}$ O provided an isomeric mixture whose $^{\rm l}$ H-NMR shows only two signals in olefinic

Scheme 1.

region at δ 5.98 and 6.82. Disappearance of higher field signal at δ 5.43 of the compound III is consistent with the cis-addition process.

The new reaction has provided not only simple vinylstannanes but also functionalized alkenylstannanes on treatment of an intermediary alkenylmetal species with various electrophiles. For instance, stannylmagnesation of 4-benzyloxy-1-butyne catalyzed by CuCN followed by the addition of MeI (large excess) gave **Vb** in 69% yield (Scheme 2).

Scheme 2.

Combination of this reaction with the reported procedure for the transformation of vinylstannanes provided us with a simple route to regio-and stereoselective synthesis of trisubstituted ethenes. The compound ${\bf Vb}$ (0.45 g, 1.0 mmol) was treated with benzyl bromide (0.17 g, 1.0 mmol) in the presence of Pd(PPh3)4 (0.06 g, 0.05 mmol)⁸ in benzene under reflux for 4 h. Usual workup and purification by preparative TLC gave ${\bf VIc}$ (0.22 g) in 81% yield. 9

Scheme 3.

references and notes

- 1. H. Hayami, M. Sato, S. Kanemoto, Y. Morizawa, K. Oshima, and H. Nozaki, <u>J. Am. Chem. Soc.</u>, **105**, 4491 (1983). For the reaction with allenes, see Y. Morizawa, H. Oda, K. Oshima, and H. Nozaki, <u>Tetrahedron Lett.</u>, in press.
- 2. Piers and his coworkers have showed that trimethylstannylcopper-dimethyl

sulfide complex adds to triple bond. The reaction requires coexisting of proton donor such as methanol (E. Piers and J. M. Chong, \underline{J} . Chem. Soc. Chem. Comm., 1983, 934. \underline{idem} , \underline{J} . Org. Chem., 47, 1604 (1982)). On the other hand, $Bu_3SnMgMe$, $Bu_3SnAlEt_2$, or $(Bu_3Sn)_2Zn$ in this work reacts without proton donor and various functionalized vinylstannanes could be prepared as shown in Scheme 2.

- 3. Other examples using Bu₃SnCu or Bu₃SnCu(L)Li, see S. D. Cox and F. Wudl, <u>Organometallics</u>, 2, 184 (1983). H. Westmijze, K. Ruitenberg, J. Meijer, and P. Vermeer, <u>Tetrahedron Lett.</u>, 23, 2797 (1982). D. E. Seitz and S. -H. Lee, <u>Tetrahedron Lett.</u>, 22, 4909 (1981). R₃SnMgR', see J. -P. Quintard, B. Elissondo, and M. Pereyre, <u>J. Organomet. Chem.</u>, 212, C31 (1981).
- 4 C. Tamborski, F. E. Ford, and E. J. Soloski, <u>J. Org. Chem.</u>, **28**, 237 (1963). W. C. Still, <u>J. Am. Chem. Soc.</u>, **99**, 4836 (1977) and **100**, 1481 (1978). W. Kitching, H. A. Olszowy, and K. Harvey, <u>J. Org. Chem.</u>, **47**, 1893 (1982).
- 5. Bp 125°C (bath temperature)/0.1 Torr; 1 H-NMR (CDC1₃) & 0.8-1.1 (m, 15H), 1.2-1.7 (m, 12H), 2.4-2.6 (m, 2H), 3.55 (t, \underline{J} = 7.0 Hz, 2H), 4.55 (s, 2H), 6.00 (s, 2H), 7.3-7.4 (m, 5H); IR (neat) 1590, 1460, 1450, 1100, 990, 730, 690 cm⁻¹; Found: C, 61.29; H, 8.96%. Calcd for $C_{23}H_{40}OSn$: C, 61.22; H, 8.93%.
- 6. A. J. Leusink, H. A. Budding, and J. W. Marsman, <u>J. Organomet. Chem.</u>, 9, 285 (1967). ¹H-NMR data was not available for the compound VII and we reexamined the reaction of trimethyltin hydride with phenylacetylene according to this literature. ¹H-NMR signals are as follows (δ value).

RC=CH
$$\xrightarrow{\text{Me}_3\text{SnH}}$$
 $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{SnMe}_3}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{SnMe}_3}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{H}}$ 6.15(d) $\xrightarrow{\text{VII}}$ $\xrightarrow{\text{VII}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{II}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{II}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{II}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{II}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{II}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{II}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{II}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text{II}}$ $\xrightarrow{\text{C=C}}$ $\xrightarrow{\text$

- 7. After adding 4-benzyloxy-l-butyne to the reagent, the reaction mixture was cooled to -78°C and stirred for 1 min. Benzaldehyde (3 mol equivalent) was added in one portion.
- M. Kosugi, Y. Shimizu, and T. Migita, <u>Chem. Lett.</u>, **1977**, 1423. J. W. Labadie, and J. K. Stille, <u>J. Am. Chem. Soc.</u>, **105**, 6129 (1983). D. Milstein and J. K. Stille, <u>J. Org. Chem.</u>, **44**, 1613 (1979). <u>Idem</u>, <u>J. Am. Chem. Soc.</u>, **101**, 4992 (1979) and **100**, 3636 (1978).
- 9. Bp 115° C (bath temperature)/0.1 Torr; 1 H-NMR (CDCl₃) & 1.67 (s, 3H), 2.34 (t, $_{\rm J}$ = 7.0 Hz, 2H), 3.32 (d, $_{\rm J}$ = 8.0 Hz, 2H), 3.52 (t, $_{\rm J}$ = 7.0 Hz, 2H), 4.45 (s, 2H), 5.37 (t, $_{\rm J}$ = 8 Hz, 1H), 7.1-7.4 (m, 10H); IR (neat) 1590, 1490, 1440, 905, 725, 690 cm⁻¹; MS (rel intensity) m/z 266 (M⁺, 4), 175 (22), 144 (36), 91 (100). Found: C, 85.67; H, 8.37%. Calcd for $C_{19}H_{22}O$: C, 85.65; H, 8.34%.

(Received in Japan 13 February 1984)